public static final class DescriptorProtos.SourceCodeInfo.Builder extends GeneratedMessage.Builder<DescriptorProtos.SourceCodeInfo.Builder> implements DescriptorProtos.SourceCodeInfoOrBuilder
google.protobuf.SourceCodeInfo
Encapsulates information about the original source file from which a FileDescriptorProto was generated.
Modifier and Type | Method and Description |
---|---|
DescriptorProtos.SourceCodeInfo.Builder |
addAllLocation(java.lang.Iterable<? extends DescriptorProtos.SourceCodeInfo.Location> values)
repeated .google.protobuf.SourceCodeInfo.Location location = 1; |
DescriptorProtos.SourceCodeInfo.Builder |
addLocation(DescriptorProtos.SourceCodeInfo.Location.Builder builderForValue)
repeated .google.protobuf.SourceCodeInfo.Location location = 1; |
DescriptorProtos.SourceCodeInfo.Builder |
addLocation(DescriptorProtos.SourceCodeInfo.Location value)
repeated .google.protobuf.SourceCodeInfo.Location location = 1; |
DescriptorProtos.SourceCodeInfo.Builder |
addLocation(int index,
DescriptorProtos.SourceCodeInfo.Location.Builder builderForValue)
repeated .google.protobuf.SourceCodeInfo.Location location = 1; |
DescriptorProtos.SourceCodeInfo.Builder |
addLocation(int index,
DescriptorProtos.SourceCodeInfo.Location value)
repeated .google.protobuf.SourceCodeInfo.Location location = 1; |
DescriptorProtos.SourceCodeInfo.Location.Builder |
addLocationBuilder()
repeated .google.protobuf.SourceCodeInfo.Location location = 1; |
DescriptorProtos.SourceCodeInfo.Location.Builder |
addLocationBuilder(int index)
repeated .google.protobuf.SourceCodeInfo.Location location = 1; |
DescriptorProtos.SourceCodeInfo |
build()
Constructs the message based on the state of the Builder.
|
DescriptorProtos.SourceCodeInfo |
buildPartial()
Like
MessageLite.Builder.build() , but does not throw an exception if the message
is missing required fields. |
DescriptorProtos.SourceCodeInfo.Builder |
clear()
Called by the initialization and clear code paths to allow subclasses to
reset any of their builtin fields back to the initial values.
|
DescriptorProtos.SourceCodeInfo.Builder |
clearLocation()
repeated .google.protobuf.SourceCodeInfo.Location location = 1; |
DescriptorProtos.SourceCodeInfo.Builder |
clone()
Clones the Builder.
|
DescriptorProtos.SourceCodeInfo |
getDefaultInstanceForType()
Get an instance of the type with no fields set.
|
static Descriptors.Descriptor |
getDescriptor() |
Descriptors.Descriptor |
getDescriptorForType()
Get the message's type's descriptor.
|
DescriptorProtos.SourceCodeInfo.Location |
getLocation(int index)
repeated .google.protobuf.SourceCodeInfo.Location location = 1; |
DescriptorProtos.SourceCodeInfo.Location.Builder |
getLocationBuilder(int index)
repeated .google.protobuf.SourceCodeInfo.Location location = 1; |
java.util.List<DescriptorProtos.SourceCodeInfo.Location.Builder> |
getLocationBuilderList()
repeated .google.protobuf.SourceCodeInfo.Location location = 1; |
int |
getLocationCount()
repeated .google.protobuf.SourceCodeInfo.Location location = 1; |
java.util.List<DescriptorProtos.SourceCodeInfo.Location> |
getLocationList()
repeated .google.protobuf.SourceCodeInfo.Location location = 1; |
DescriptorProtos.SourceCodeInfo.LocationOrBuilder |
getLocationOrBuilder(int index)
repeated .google.protobuf.SourceCodeInfo.Location location = 1; |
java.util.List<? extends DescriptorProtos.SourceCodeInfo.LocationOrBuilder> |
getLocationOrBuilderList()
repeated .google.protobuf.SourceCodeInfo.Location location = 1; |
boolean |
isInitialized()
Returns true if all required fields in the message and all embedded
messages are set, false otherwise.
|
DescriptorProtos.SourceCodeInfo.Builder |
mergeFrom(CodedInputStream input,
ExtensionRegistryLite extensionRegistry)
Like
MessageLite.Builder.mergeFrom(CodedInputStream) , but also
parses extensions. |
DescriptorProtos.SourceCodeInfo.Builder |
mergeFrom(DescriptorProtos.SourceCodeInfo other) |
DescriptorProtos.SourceCodeInfo.Builder |
mergeFrom(Message other)
Merge
other into the message being built. |
DescriptorProtos.SourceCodeInfo.Builder |
removeLocation(int index)
repeated .google.protobuf.SourceCodeInfo.Location location = 1; |
DescriptorProtos.SourceCodeInfo.Builder |
setLocation(int index,
DescriptorProtos.SourceCodeInfo.Location.Builder builderForValue)
repeated .google.protobuf.SourceCodeInfo.Location location = 1; |
DescriptorProtos.SourceCodeInfo.Builder |
setLocation(int index,
DescriptorProtos.SourceCodeInfo.Location value)
repeated .google.protobuf.SourceCodeInfo.Location location = 1; |
addRepeatedField, clearField, getAllFields, getField, getFieldBuilder, getRepeatedField, getRepeatedFieldCount, getUnknownFields, hasField, mergeUnknownFields, newBuilderForField, setField, setRepeatedField, setUnknownFields
findInitializationErrors, getInitializationErrorString, mergeDelimitedFrom, mergeDelimitedFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
findInitializationErrors, getAllFields, getField, getInitializationErrorString, getRepeatedField, getRepeatedFieldCount, getUnknownFields, hasField
public static final Descriptors.Descriptor getDescriptor()
public DescriptorProtos.SourceCodeInfo.Builder clear()
GeneratedMessage.Builder
clear
in interface Message.Builder
clear
in interface MessageLite.Builder
clear
in class GeneratedMessage.Builder<DescriptorProtos.SourceCodeInfo.Builder>
public DescriptorProtos.SourceCodeInfo.Builder clone()
MessageLite.Builder
clone
in interface Message.Builder
clone
in interface MessageLite.Builder
clone
in class GeneratedMessage.Builder<DescriptorProtos.SourceCodeInfo.Builder>
Object.clone()
public Descriptors.Descriptor getDescriptorForType()
Message.Builder
MessageOrBuilder.getDescriptorForType()
.getDescriptorForType
in interface Message.Builder
getDescriptorForType
in interface MessageOrBuilder
getDescriptorForType
in class GeneratedMessage.Builder<DescriptorProtos.SourceCodeInfo.Builder>
public DescriptorProtos.SourceCodeInfo getDefaultInstanceForType()
MessageLiteOrBuilder
getDefaultInstance()
method of generated message classes in that
this method is an abstract method of the MessageLite
interface
whereas getDefaultInstance()
is a static method of a specific
class. They return the same thing.getDefaultInstanceForType
in interface MessageLiteOrBuilder
getDefaultInstanceForType
in interface MessageOrBuilder
public DescriptorProtos.SourceCodeInfo build()
MessageLite.Builder
build
in interface Message.Builder
build
in interface MessageLite.Builder
public DescriptorProtos.SourceCodeInfo buildPartial()
MessageLite.Builder
MessageLite.Builder.build()
, but does not throw an exception if the message
is missing required fields. Instead, a partial message is returned.
Subsequent changes to the Builder will not affect the returned message.buildPartial
in interface Message.Builder
buildPartial
in interface MessageLite.Builder
public DescriptorProtos.SourceCodeInfo.Builder mergeFrom(Message other)
Message.Builder
other
into the message being built. other
must
have the exact same type as this
(i.e.
getDescriptorForType() == other.getDescriptorForType()
).
Merging occurs as follows. For each field:other
,
then other
's value overwrites the value in this message.other
,
it is merged into the corresponding sub-message of this message
using the same merging rules.other
are concatenated
with the elements in this message.
This is equivalent to the Message::MergeFrom
method in C++.mergeFrom
in interface Message.Builder
mergeFrom
in class AbstractMessage.Builder<DescriptorProtos.SourceCodeInfo.Builder>
public DescriptorProtos.SourceCodeInfo.Builder mergeFrom(DescriptorProtos.SourceCodeInfo other)
public final boolean isInitialized()
MessageLiteOrBuilder
isInitialized
in interface MessageLiteOrBuilder
isInitialized
in class GeneratedMessage.Builder<DescriptorProtos.SourceCodeInfo.Builder>
public DescriptorProtos.SourceCodeInfo.Builder mergeFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry) throws java.io.IOException
MessageLite.Builder
MessageLite.Builder.mergeFrom(CodedInputStream)
, but also
parses extensions. The extensions that you want to be able to parse
must be registered in extensionRegistry
. Extensions not in
the registry will be treated as unknown fields.mergeFrom
in interface Message.Builder
mergeFrom
in interface MessageLite.Builder
mergeFrom
in class AbstractMessage.Builder<DescriptorProtos.SourceCodeInfo.Builder>
java.io.IOException
public java.util.List<DescriptorProtos.SourceCodeInfo.Location> getLocationList()
repeated .google.protobuf.SourceCodeInfo.Location location = 1;
A Location identifies a piece of source code in a .proto file which corresponds to a particular definition. This information is intended to be useful to IDEs, code indexers, documentation generators, and similar tools. For example, say we have a file like: message Foo { optional string foo = 1; } Let's look at just the field definition: optional string foo = 1; ^ ^^ ^^ ^ ^^^ a bc de f ghi We have the following locations: span path represents [a,i) [ 4, 0, 2, 0 ] The whole field definition. [a,b) [ 4, 0, 2, 0, 4 ] The label (optional). [c,d) [ 4, 0, 2, 0, 5 ] The type (string). [e,f) [ 4, 0, 2, 0, 1 ] The name (foo). [g,h) [ 4, 0, 2, 0, 3 ] The number (1). Notes: - A location may refer to a repeated field itself (i.e. not to any particular index within it). This is used whenever a set of elements are logically enclosed in a single code segment. For example, an entire extend block (possibly containing multiple extension definitions) will have an outer location whose path refers to the "extensions" repeated field without an index. - Multiple locations may have the same path. This happens when a single logical declaration is spread out across multiple places. The most obvious example is the "extend" block again -- there may be multiple extend blocks in the same scope, each of which will have the same path. - A location's span is not always a subset of its parent's span. For example, the "extendee" of an extension declaration appears at the beginning of the "extend" block and is shared by all extensions within the block. - Just because a location's span is a subset of some other location's span does not mean that it is a descendent. For example, a "group" defines both a type and a field in a single declaration. Thus, the locations corresponding to the type and field and their components will overlap. - Code which tries to interpret locations should probably be designed to ignore those that it doesn't understand, as more types of locations could be recorded in the future.
getLocationList
in interface DescriptorProtos.SourceCodeInfoOrBuilder
public int getLocationCount()
repeated .google.protobuf.SourceCodeInfo.Location location = 1;
A Location identifies a piece of source code in a .proto file which corresponds to a particular definition. This information is intended to be useful to IDEs, code indexers, documentation generators, and similar tools. For example, say we have a file like: message Foo { optional string foo = 1; } Let's look at just the field definition: optional string foo = 1; ^ ^^ ^^ ^ ^^^ a bc de f ghi We have the following locations: span path represents [a,i) [ 4, 0, 2, 0 ] The whole field definition. [a,b) [ 4, 0, 2, 0, 4 ] The label (optional). [c,d) [ 4, 0, 2, 0, 5 ] The type (string). [e,f) [ 4, 0, 2, 0, 1 ] The name (foo). [g,h) [ 4, 0, 2, 0, 3 ] The number (1). Notes: - A location may refer to a repeated field itself (i.e. not to any particular index within it). This is used whenever a set of elements are logically enclosed in a single code segment. For example, an entire extend block (possibly containing multiple extension definitions) will have an outer location whose path refers to the "extensions" repeated field without an index. - Multiple locations may have the same path. This happens when a single logical declaration is spread out across multiple places. The most obvious example is the "extend" block again -- there may be multiple extend blocks in the same scope, each of which will have the same path. - A location's span is not always a subset of its parent's span. For example, the "extendee" of an extension declaration appears at the beginning of the "extend" block and is shared by all extensions within the block. - Just because a location's span is a subset of some other location's span does not mean that it is a descendent. For example, a "group" defines both a type and a field in a single declaration. Thus, the locations corresponding to the type and field and their components will overlap. - Code which tries to interpret locations should probably be designed to ignore those that it doesn't understand, as more types of locations could be recorded in the future.
getLocationCount
in interface DescriptorProtos.SourceCodeInfoOrBuilder
public DescriptorProtos.SourceCodeInfo.Location getLocation(int index)
repeated .google.protobuf.SourceCodeInfo.Location location = 1;
A Location identifies a piece of source code in a .proto file which corresponds to a particular definition. This information is intended to be useful to IDEs, code indexers, documentation generators, and similar tools. For example, say we have a file like: message Foo { optional string foo = 1; } Let's look at just the field definition: optional string foo = 1; ^ ^^ ^^ ^ ^^^ a bc de f ghi We have the following locations: span path represents [a,i) [ 4, 0, 2, 0 ] The whole field definition. [a,b) [ 4, 0, 2, 0, 4 ] The label (optional). [c,d) [ 4, 0, 2, 0, 5 ] The type (string). [e,f) [ 4, 0, 2, 0, 1 ] The name (foo). [g,h) [ 4, 0, 2, 0, 3 ] The number (1). Notes: - A location may refer to a repeated field itself (i.e. not to any particular index within it). This is used whenever a set of elements are logically enclosed in a single code segment. For example, an entire extend block (possibly containing multiple extension definitions) will have an outer location whose path refers to the "extensions" repeated field without an index. - Multiple locations may have the same path. This happens when a single logical declaration is spread out across multiple places. The most obvious example is the "extend" block again -- there may be multiple extend blocks in the same scope, each of which will have the same path. - A location's span is not always a subset of its parent's span. For example, the "extendee" of an extension declaration appears at the beginning of the "extend" block and is shared by all extensions within the block. - Just because a location's span is a subset of some other location's span does not mean that it is a descendent. For example, a "group" defines both a type and a field in a single declaration. Thus, the locations corresponding to the type and field and their components will overlap. - Code which tries to interpret locations should probably be designed to ignore those that it doesn't understand, as more types of locations could be recorded in the future.
getLocation
in interface DescriptorProtos.SourceCodeInfoOrBuilder
public DescriptorProtos.SourceCodeInfo.Builder setLocation(int index, DescriptorProtos.SourceCodeInfo.Location value)
repeated .google.protobuf.SourceCodeInfo.Location location = 1;
A Location identifies a piece of source code in a .proto file which corresponds to a particular definition. This information is intended to be useful to IDEs, code indexers, documentation generators, and similar tools. For example, say we have a file like: message Foo { optional string foo = 1; } Let's look at just the field definition: optional string foo = 1; ^ ^^ ^^ ^ ^^^ a bc de f ghi We have the following locations: span path represents [a,i) [ 4, 0, 2, 0 ] The whole field definition. [a,b) [ 4, 0, 2, 0, 4 ] The label (optional). [c,d) [ 4, 0, 2, 0, 5 ] The type (string). [e,f) [ 4, 0, 2, 0, 1 ] The name (foo). [g,h) [ 4, 0, 2, 0, 3 ] The number (1). Notes: - A location may refer to a repeated field itself (i.e. not to any particular index within it). This is used whenever a set of elements are logically enclosed in a single code segment. For example, an entire extend block (possibly containing multiple extension definitions) will have an outer location whose path refers to the "extensions" repeated field without an index. - Multiple locations may have the same path. This happens when a single logical declaration is spread out across multiple places. The most obvious example is the "extend" block again -- there may be multiple extend blocks in the same scope, each of which will have the same path. - A location's span is not always a subset of its parent's span. For example, the "extendee" of an extension declaration appears at the beginning of the "extend" block and is shared by all extensions within the block. - Just because a location's span is a subset of some other location's span does not mean that it is a descendent. For example, a "group" defines both a type and a field in a single declaration. Thus, the locations corresponding to the type and field and their components will overlap. - Code which tries to interpret locations should probably be designed to ignore those that it doesn't understand, as more types of locations could be recorded in the future.
public DescriptorProtos.SourceCodeInfo.Builder setLocation(int index, DescriptorProtos.SourceCodeInfo.Location.Builder builderForValue)
repeated .google.protobuf.SourceCodeInfo.Location location = 1;
A Location identifies a piece of source code in a .proto file which corresponds to a particular definition. This information is intended to be useful to IDEs, code indexers, documentation generators, and similar tools. For example, say we have a file like: message Foo { optional string foo = 1; } Let's look at just the field definition: optional string foo = 1; ^ ^^ ^^ ^ ^^^ a bc de f ghi We have the following locations: span path represents [a,i) [ 4, 0, 2, 0 ] The whole field definition. [a,b) [ 4, 0, 2, 0, 4 ] The label (optional). [c,d) [ 4, 0, 2, 0, 5 ] The type (string). [e,f) [ 4, 0, 2, 0, 1 ] The name (foo). [g,h) [ 4, 0, 2, 0, 3 ] The number (1). Notes: - A location may refer to a repeated field itself (i.e. not to any particular index within it). This is used whenever a set of elements are logically enclosed in a single code segment. For example, an entire extend block (possibly containing multiple extension definitions) will have an outer location whose path refers to the "extensions" repeated field without an index. - Multiple locations may have the same path. This happens when a single logical declaration is spread out across multiple places. The most obvious example is the "extend" block again -- there may be multiple extend blocks in the same scope, each of which will have the same path. - A location's span is not always a subset of its parent's span. For example, the "extendee" of an extension declaration appears at the beginning of the "extend" block and is shared by all extensions within the block. - Just because a location's span is a subset of some other location's span does not mean that it is a descendent. For example, a "group" defines both a type and a field in a single declaration. Thus, the locations corresponding to the type and field and their components will overlap. - Code which tries to interpret locations should probably be designed to ignore those that it doesn't understand, as more types of locations could be recorded in the future.
public DescriptorProtos.SourceCodeInfo.Builder addLocation(DescriptorProtos.SourceCodeInfo.Location value)
repeated .google.protobuf.SourceCodeInfo.Location location = 1;
A Location identifies a piece of source code in a .proto file which corresponds to a particular definition. This information is intended to be useful to IDEs, code indexers, documentation generators, and similar tools. For example, say we have a file like: message Foo { optional string foo = 1; } Let's look at just the field definition: optional string foo = 1; ^ ^^ ^^ ^ ^^^ a bc de f ghi We have the following locations: span path represents [a,i) [ 4, 0, 2, 0 ] The whole field definition. [a,b) [ 4, 0, 2, 0, 4 ] The label (optional). [c,d) [ 4, 0, 2, 0, 5 ] The type (string). [e,f) [ 4, 0, 2, 0, 1 ] The name (foo). [g,h) [ 4, 0, 2, 0, 3 ] The number (1). Notes: - A location may refer to a repeated field itself (i.e. not to any particular index within it). This is used whenever a set of elements are logically enclosed in a single code segment. For example, an entire extend block (possibly containing multiple extension definitions) will have an outer location whose path refers to the "extensions" repeated field without an index. - Multiple locations may have the same path. This happens when a single logical declaration is spread out across multiple places. The most obvious example is the "extend" block again -- there may be multiple extend blocks in the same scope, each of which will have the same path. - A location's span is not always a subset of its parent's span. For example, the "extendee" of an extension declaration appears at the beginning of the "extend" block and is shared by all extensions within the block. - Just because a location's span is a subset of some other location's span does not mean that it is a descendent. For example, a "group" defines both a type and a field in a single declaration. Thus, the locations corresponding to the type and field and their components will overlap. - Code which tries to interpret locations should probably be designed to ignore those that it doesn't understand, as more types of locations could be recorded in the future.
public DescriptorProtos.SourceCodeInfo.Builder addLocation(int index, DescriptorProtos.SourceCodeInfo.Location value)
repeated .google.protobuf.SourceCodeInfo.Location location = 1;
A Location identifies a piece of source code in a .proto file which corresponds to a particular definition. This information is intended to be useful to IDEs, code indexers, documentation generators, and similar tools. For example, say we have a file like: message Foo { optional string foo = 1; } Let's look at just the field definition: optional string foo = 1; ^ ^^ ^^ ^ ^^^ a bc de f ghi We have the following locations: span path represents [a,i) [ 4, 0, 2, 0 ] The whole field definition. [a,b) [ 4, 0, 2, 0, 4 ] The label (optional). [c,d) [ 4, 0, 2, 0, 5 ] The type (string). [e,f) [ 4, 0, 2, 0, 1 ] The name (foo). [g,h) [ 4, 0, 2, 0, 3 ] The number (1). Notes: - A location may refer to a repeated field itself (i.e. not to any particular index within it). This is used whenever a set of elements are logically enclosed in a single code segment. For example, an entire extend block (possibly containing multiple extension definitions) will have an outer location whose path refers to the "extensions" repeated field without an index. - Multiple locations may have the same path. This happens when a single logical declaration is spread out across multiple places. The most obvious example is the "extend" block again -- there may be multiple extend blocks in the same scope, each of which will have the same path. - A location's span is not always a subset of its parent's span. For example, the "extendee" of an extension declaration appears at the beginning of the "extend" block and is shared by all extensions within the block. - Just because a location's span is a subset of some other location's span does not mean that it is a descendent. For example, a "group" defines both a type and a field in a single declaration. Thus, the locations corresponding to the type and field and their components will overlap. - Code which tries to interpret locations should probably be designed to ignore those that it doesn't understand, as more types of locations could be recorded in the future.
public DescriptorProtos.SourceCodeInfo.Builder addLocation(DescriptorProtos.SourceCodeInfo.Location.Builder builderForValue)
repeated .google.protobuf.SourceCodeInfo.Location location = 1;
A Location identifies a piece of source code in a .proto file which corresponds to a particular definition. This information is intended to be useful to IDEs, code indexers, documentation generators, and similar tools. For example, say we have a file like: message Foo { optional string foo = 1; } Let's look at just the field definition: optional string foo = 1; ^ ^^ ^^ ^ ^^^ a bc de f ghi We have the following locations: span path represents [a,i) [ 4, 0, 2, 0 ] The whole field definition. [a,b) [ 4, 0, 2, 0, 4 ] The label (optional). [c,d) [ 4, 0, 2, 0, 5 ] The type (string). [e,f) [ 4, 0, 2, 0, 1 ] The name (foo). [g,h) [ 4, 0, 2, 0, 3 ] The number (1). Notes: - A location may refer to a repeated field itself (i.e. not to any particular index within it). This is used whenever a set of elements are logically enclosed in a single code segment. For example, an entire extend block (possibly containing multiple extension definitions) will have an outer location whose path refers to the "extensions" repeated field without an index. - Multiple locations may have the same path. This happens when a single logical declaration is spread out across multiple places. The most obvious example is the "extend" block again -- there may be multiple extend blocks in the same scope, each of which will have the same path. - A location's span is not always a subset of its parent's span. For example, the "extendee" of an extension declaration appears at the beginning of the "extend" block and is shared by all extensions within the block. - Just because a location's span is a subset of some other location's span does not mean that it is a descendent. For example, a "group" defines both a type and a field in a single declaration. Thus, the locations corresponding to the type and field and their components will overlap. - Code which tries to interpret locations should probably be designed to ignore those that it doesn't understand, as more types of locations could be recorded in the future.
public DescriptorProtos.SourceCodeInfo.Builder addLocation(int index, DescriptorProtos.SourceCodeInfo.Location.Builder builderForValue)
repeated .google.protobuf.SourceCodeInfo.Location location = 1;
A Location identifies a piece of source code in a .proto file which corresponds to a particular definition. This information is intended to be useful to IDEs, code indexers, documentation generators, and similar tools. For example, say we have a file like: message Foo { optional string foo = 1; } Let's look at just the field definition: optional string foo = 1; ^ ^^ ^^ ^ ^^^ a bc de f ghi We have the following locations: span path represents [a,i) [ 4, 0, 2, 0 ] The whole field definition. [a,b) [ 4, 0, 2, 0, 4 ] The label (optional). [c,d) [ 4, 0, 2, 0, 5 ] The type (string). [e,f) [ 4, 0, 2, 0, 1 ] The name (foo). [g,h) [ 4, 0, 2, 0, 3 ] The number (1). Notes: - A location may refer to a repeated field itself (i.e. not to any particular index within it). This is used whenever a set of elements are logically enclosed in a single code segment. For example, an entire extend block (possibly containing multiple extension definitions) will have an outer location whose path refers to the "extensions" repeated field without an index. - Multiple locations may have the same path. This happens when a single logical declaration is spread out across multiple places. The most obvious example is the "extend" block again -- there may be multiple extend blocks in the same scope, each of which will have the same path. - A location's span is not always a subset of its parent's span. For example, the "extendee" of an extension declaration appears at the beginning of the "extend" block and is shared by all extensions within the block. - Just because a location's span is a subset of some other location's span does not mean that it is a descendent. For example, a "group" defines both a type and a field in a single declaration. Thus, the locations corresponding to the type and field and their components will overlap. - Code which tries to interpret locations should probably be designed to ignore those that it doesn't understand, as more types of locations could be recorded in the future.
public DescriptorProtos.SourceCodeInfo.Builder addAllLocation(java.lang.Iterable<? extends DescriptorProtos.SourceCodeInfo.Location> values)
repeated .google.protobuf.SourceCodeInfo.Location location = 1;
A Location identifies a piece of source code in a .proto file which corresponds to a particular definition. This information is intended to be useful to IDEs, code indexers, documentation generators, and similar tools. For example, say we have a file like: message Foo { optional string foo = 1; } Let's look at just the field definition: optional string foo = 1; ^ ^^ ^^ ^ ^^^ a bc de f ghi We have the following locations: span path represents [a,i) [ 4, 0, 2, 0 ] The whole field definition. [a,b) [ 4, 0, 2, 0, 4 ] The label (optional). [c,d) [ 4, 0, 2, 0, 5 ] The type (string). [e,f) [ 4, 0, 2, 0, 1 ] The name (foo). [g,h) [ 4, 0, 2, 0, 3 ] The number (1). Notes: - A location may refer to a repeated field itself (i.e. not to any particular index within it). This is used whenever a set of elements are logically enclosed in a single code segment. For example, an entire extend block (possibly containing multiple extension definitions) will have an outer location whose path refers to the "extensions" repeated field without an index. - Multiple locations may have the same path. This happens when a single logical declaration is spread out across multiple places. The most obvious example is the "extend" block again -- there may be multiple extend blocks in the same scope, each of which will have the same path. - A location's span is not always a subset of its parent's span. For example, the "extendee" of an extension declaration appears at the beginning of the "extend" block and is shared by all extensions within the block. - Just because a location's span is a subset of some other location's span does not mean that it is a descendent. For example, a "group" defines both a type and a field in a single declaration. Thus, the locations corresponding to the type and field and their components will overlap. - Code which tries to interpret locations should probably be designed to ignore those that it doesn't understand, as more types of locations could be recorded in the future.
public DescriptorProtos.SourceCodeInfo.Builder clearLocation()
repeated .google.protobuf.SourceCodeInfo.Location location = 1;
A Location identifies a piece of source code in a .proto file which corresponds to a particular definition. This information is intended to be useful to IDEs, code indexers, documentation generators, and similar tools. For example, say we have a file like: message Foo { optional string foo = 1; } Let's look at just the field definition: optional string foo = 1; ^ ^^ ^^ ^ ^^^ a bc de f ghi We have the following locations: span path represents [a,i) [ 4, 0, 2, 0 ] The whole field definition. [a,b) [ 4, 0, 2, 0, 4 ] The label (optional). [c,d) [ 4, 0, 2, 0, 5 ] The type (string). [e,f) [ 4, 0, 2, 0, 1 ] The name (foo). [g,h) [ 4, 0, 2, 0, 3 ] The number (1). Notes: - A location may refer to a repeated field itself (i.e. not to any particular index within it). This is used whenever a set of elements are logically enclosed in a single code segment. For example, an entire extend block (possibly containing multiple extension definitions) will have an outer location whose path refers to the "extensions" repeated field without an index. - Multiple locations may have the same path. This happens when a single logical declaration is spread out across multiple places. The most obvious example is the "extend" block again -- there may be multiple extend blocks in the same scope, each of which will have the same path. - A location's span is not always a subset of its parent's span. For example, the "extendee" of an extension declaration appears at the beginning of the "extend" block and is shared by all extensions within the block. - Just because a location's span is a subset of some other location's span does not mean that it is a descendent. For example, a "group" defines both a type and a field in a single declaration. Thus, the locations corresponding to the type and field and their components will overlap. - Code which tries to interpret locations should probably be designed to ignore those that it doesn't understand, as more types of locations could be recorded in the future.
public DescriptorProtos.SourceCodeInfo.Builder removeLocation(int index)
repeated .google.protobuf.SourceCodeInfo.Location location = 1;
A Location identifies a piece of source code in a .proto file which corresponds to a particular definition. This information is intended to be useful to IDEs, code indexers, documentation generators, and similar tools. For example, say we have a file like: message Foo { optional string foo = 1; } Let's look at just the field definition: optional string foo = 1; ^ ^^ ^^ ^ ^^^ a bc de f ghi We have the following locations: span path represents [a,i) [ 4, 0, 2, 0 ] The whole field definition. [a,b) [ 4, 0, 2, 0, 4 ] The label (optional). [c,d) [ 4, 0, 2, 0, 5 ] The type (string). [e,f) [ 4, 0, 2, 0, 1 ] The name (foo). [g,h) [ 4, 0, 2, 0, 3 ] The number (1). Notes: - A location may refer to a repeated field itself (i.e. not to any particular index within it). This is used whenever a set of elements are logically enclosed in a single code segment. For example, an entire extend block (possibly containing multiple extension definitions) will have an outer location whose path refers to the "extensions" repeated field without an index. - Multiple locations may have the same path. This happens when a single logical declaration is spread out across multiple places. The most obvious example is the "extend" block again -- there may be multiple extend blocks in the same scope, each of which will have the same path. - A location's span is not always a subset of its parent's span. For example, the "extendee" of an extension declaration appears at the beginning of the "extend" block and is shared by all extensions within the block. - Just because a location's span is a subset of some other location's span does not mean that it is a descendent. For example, a "group" defines both a type and a field in a single declaration. Thus, the locations corresponding to the type and field and their components will overlap. - Code which tries to interpret locations should probably be designed to ignore those that it doesn't understand, as more types of locations could be recorded in the future.
public DescriptorProtos.SourceCodeInfo.Location.Builder getLocationBuilder(int index)
repeated .google.protobuf.SourceCodeInfo.Location location = 1;
A Location identifies a piece of source code in a .proto file which corresponds to a particular definition. This information is intended to be useful to IDEs, code indexers, documentation generators, and similar tools. For example, say we have a file like: message Foo { optional string foo = 1; } Let's look at just the field definition: optional string foo = 1; ^ ^^ ^^ ^ ^^^ a bc de f ghi We have the following locations: span path represents [a,i) [ 4, 0, 2, 0 ] The whole field definition. [a,b) [ 4, 0, 2, 0, 4 ] The label (optional). [c,d) [ 4, 0, 2, 0, 5 ] The type (string). [e,f) [ 4, 0, 2, 0, 1 ] The name (foo). [g,h) [ 4, 0, 2, 0, 3 ] The number (1). Notes: - A location may refer to a repeated field itself (i.e. not to any particular index within it). This is used whenever a set of elements are logically enclosed in a single code segment. For example, an entire extend block (possibly containing multiple extension definitions) will have an outer location whose path refers to the "extensions" repeated field without an index. - Multiple locations may have the same path. This happens when a single logical declaration is spread out across multiple places. The most obvious example is the "extend" block again -- there may be multiple extend blocks in the same scope, each of which will have the same path. - A location's span is not always a subset of its parent's span. For example, the "extendee" of an extension declaration appears at the beginning of the "extend" block and is shared by all extensions within the block. - Just because a location's span is a subset of some other location's span does not mean that it is a descendent. For example, a "group" defines both a type and a field in a single declaration. Thus, the locations corresponding to the type and field and their components will overlap. - Code which tries to interpret locations should probably be designed to ignore those that it doesn't understand, as more types of locations could be recorded in the future.
public DescriptorProtos.SourceCodeInfo.LocationOrBuilder getLocationOrBuilder(int index)
repeated .google.protobuf.SourceCodeInfo.Location location = 1;
A Location identifies a piece of source code in a .proto file which corresponds to a particular definition. This information is intended to be useful to IDEs, code indexers, documentation generators, and similar tools. For example, say we have a file like: message Foo { optional string foo = 1; } Let's look at just the field definition: optional string foo = 1; ^ ^^ ^^ ^ ^^^ a bc de f ghi We have the following locations: span path represents [a,i) [ 4, 0, 2, 0 ] The whole field definition. [a,b) [ 4, 0, 2, 0, 4 ] The label (optional). [c,d) [ 4, 0, 2, 0, 5 ] The type (string). [e,f) [ 4, 0, 2, 0, 1 ] The name (foo). [g,h) [ 4, 0, 2, 0, 3 ] The number (1). Notes: - A location may refer to a repeated field itself (i.e. not to any particular index within it). This is used whenever a set of elements are logically enclosed in a single code segment. For example, an entire extend block (possibly containing multiple extension definitions) will have an outer location whose path refers to the "extensions" repeated field without an index. - Multiple locations may have the same path. This happens when a single logical declaration is spread out across multiple places. The most obvious example is the "extend" block again -- there may be multiple extend blocks in the same scope, each of which will have the same path. - A location's span is not always a subset of its parent's span. For example, the "extendee" of an extension declaration appears at the beginning of the "extend" block and is shared by all extensions within the block. - Just because a location's span is a subset of some other location's span does not mean that it is a descendent. For example, a "group" defines both a type and a field in a single declaration. Thus, the locations corresponding to the type and field and their components will overlap. - Code which tries to interpret locations should probably be designed to ignore those that it doesn't understand, as more types of locations could be recorded in the future.
getLocationOrBuilder
in interface DescriptorProtos.SourceCodeInfoOrBuilder
public java.util.List<? extends DescriptorProtos.SourceCodeInfo.LocationOrBuilder> getLocationOrBuilderList()
repeated .google.protobuf.SourceCodeInfo.Location location = 1;
A Location identifies a piece of source code in a .proto file which corresponds to a particular definition. This information is intended to be useful to IDEs, code indexers, documentation generators, and similar tools. For example, say we have a file like: message Foo { optional string foo = 1; } Let's look at just the field definition: optional string foo = 1; ^ ^^ ^^ ^ ^^^ a bc de f ghi We have the following locations: span path represents [a,i) [ 4, 0, 2, 0 ] The whole field definition. [a,b) [ 4, 0, 2, 0, 4 ] The label (optional). [c,d) [ 4, 0, 2, 0, 5 ] The type (string). [e,f) [ 4, 0, 2, 0, 1 ] The name (foo). [g,h) [ 4, 0, 2, 0, 3 ] The number (1). Notes: - A location may refer to a repeated field itself (i.e. not to any particular index within it). This is used whenever a set of elements are logically enclosed in a single code segment. For example, an entire extend block (possibly containing multiple extension definitions) will have an outer location whose path refers to the "extensions" repeated field without an index. - Multiple locations may have the same path. This happens when a single logical declaration is spread out across multiple places. The most obvious example is the "extend" block again -- there may be multiple extend blocks in the same scope, each of which will have the same path. - A location's span is not always a subset of its parent's span. For example, the "extendee" of an extension declaration appears at the beginning of the "extend" block and is shared by all extensions within the block. - Just because a location's span is a subset of some other location's span does not mean that it is a descendent. For example, a "group" defines both a type and a field in a single declaration. Thus, the locations corresponding to the type and field and their components will overlap. - Code which tries to interpret locations should probably be designed to ignore those that it doesn't understand, as more types of locations could be recorded in the future.
getLocationOrBuilderList
in interface DescriptorProtos.SourceCodeInfoOrBuilder
public DescriptorProtos.SourceCodeInfo.Location.Builder addLocationBuilder()
repeated .google.protobuf.SourceCodeInfo.Location location = 1;
A Location identifies a piece of source code in a .proto file which corresponds to a particular definition. This information is intended to be useful to IDEs, code indexers, documentation generators, and similar tools. For example, say we have a file like: message Foo { optional string foo = 1; } Let's look at just the field definition: optional string foo = 1; ^ ^^ ^^ ^ ^^^ a bc de f ghi We have the following locations: span path represents [a,i) [ 4, 0, 2, 0 ] The whole field definition. [a,b) [ 4, 0, 2, 0, 4 ] The label (optional). [c,d) [ 4, 0, 2, 0, 5 ] The type (string). [e,f) [ 4, 0, 2, 0, 1 ] The name (foo). [g,h) [ 4, 0, 2, 0, 3 ] The number (1). Notes: - A location may refer to a repeated field itself (i.e. not to any particular index within it). This is used whenever a set of elements are logically enclosed in a single code segment. For example, an entire extend block (possibly containing multiple extension definitions) will have an outer location whose path refers to the "extensions" repeated field without an index. - Multiple locations may have the same path. This happens when a single logical declaration is spread out across multiple places. The most obvious example is the "extend" block again -- there may be multiple extend blocks in the same scope, each of which will have the same path. - A location's span is not always a subset of its parent's span. For example, the "extendee" of an extension declaration appears at the beginning of the "extend" block and is shared by all extensions within the block. - Just because a location's span is a subset of some other location's span does not mean that it is a descendent. For example, a "group" defines both a type and a field in a single declaration. Thus, the locations corresponding to the type and field and their components will overlap. - Code which tries to interpret locations should probably be designed to ignore those that it doesn't understand, as more types of locations could be recorded in the future.
public DescriptorProtos.SourceCodeInfo.Location.Builder addLocationBuilder(int index)
repeated .google.protobuf.SourceCodeInfo.Location location = 1;
A Location identifies a piece of source code in a .proto file which corresponds to a particular definition. This information is intended to be useful to IDEs, code indexers, documentation generators, and similar tools. For example, say we have a file like: message Foo { optional string foo = 1; } Let's look at just the field definition: optional string foo = 1; ^ ^^ ^^ ^ ^^^ a bc de f ghi We have the following locations: span path represents [a,i) [ 4, 0, 2, 0 ] The whole field definition. [a,b) [ 4, 0, 2, 0, 4 ] The label (optional). [c,d) [ 4, 0, 2, 0, 5 ] The type (string). [e,f) [ 4, 0, 2, 0, 1 ] The name (foo). [g,h) [ 4, 0, 2, 0, 3 ] The number (1). Notes: - A location may refer to a repeated field itself (i.e. not to any particular index within it). This is used whenever a set of elements are logically enclosed in a single code segment. For example, an entire extend block (possibly containing multiple extension definitions) will have an outer location whose path refers to the "extensions" repeated field without an index. - Multiple locations may have the same path. This happens when a single logical declaration is spread out across multiple places. The most obvious example is the "extend" block again -- there may be multiple extend blocks in the same scope, each of which will have the same path. - A location's span is not always a subset of its parent's span. For example, the "extendee" of an extension declaration appears at the beginning of the "extend" block and is shared by all extensions within the block. - Just because a location's span is a subset of some other location's span does not mean that it is a descendent. For example, a "group" defines both a type and a field in a single declaration. Thus, the locations corresponding to the type and field and their components will overlap. - Code which tries to interpret locations should probably be designed to ignore those that it doesn't understand, as more types of locations could be recorded in the future.
public java.util.List<DescriptorProtos.SourceCodeInfo.Location.Builder> getLocationBuilderList()
repeated .google.protobuf.SourceCodeInfo.Location location = 1;
A Location identifies a piece of source code in a .proto file which corresponds to a particular definition. This information is intended to be useful to IDEs, code indexers, documentation generators, and similar tools. For example, say we have a file like: message Foo { optional string foo = 1; } Let's look at just the field definition: optional string foo = 1; ^ ^^ ^^ ^ ^^^ a bc de f ghi We have the following locations: span path represents [a,i) [ 4, 0, 2, 0 ] The whole field definition. [a,b) [ 4, 0, 2, 0, 4 ] The label (optional). [c,d) [ 4, 0, 2, 0, 5 ] The type (string). [e,f) [ 4, 0, 2, 0, 1 ] The name (foo). [g,h) [ 4, 0, 2, 0, 3 ] The number (1). Notes: - A location may refer to a repeated field itself (i.e. not to any particular index within it). This is used whenever a set of elements are logically enclosed in a single code segment. For example, an entire extend block (possibly containing multiple extension definitions) will have an outer location whose path refers to the "extensions" repeated field without an index. - Multiple locations may have the same path. This happens when a single logical declaration is spread out across multiple places. The most obvious example is the "extend" block again -- there may be multiple extend blocks in the same scope, each of which will have the same path. - A location's span is not always a subset of its parent's span. For example, the "extendee" of an extension declaration appears at the beginning of the "extend" block and is shared by all extensions within the block. - Just because a location's span is a subset of some other location's span does not mean that it is a descendent. For example, a "group" defines both a type and a field in a single declaration. Thus, the locations corresponding to the type and field and their components will overlap. - Code which tries to interpret locations should probably be designed to ignore those that it doesn't understand, as more types of locations could be recorded in the future.