public static final class DescriptorProtos.SourceCodeInfo extends GeneratedMessage implements DescriptorProtos.SourceCodeInfoOrBuilder
google.protobuf.SourceCodeInfo
Encapsulates information about the original source file from which a FileDescriptorProto was generated.
Modifier and Type | Class and Description |
---|---|
static class |
DescriptorProtos.SourceCodeInfo.Builder
Protobuf type
google.protobuf.SourceCodeInfo |
static class |
DescriptorProtos.SourceCodeInfo.Location
Protobuf type
google.protobuf.SourceCodeInfo.Location |
static interface |
DescriptorProtos.SourceCodeInfo.LocationOrBuilder |
GeneratedMessage.ExtendableBuilder<MessageType extends GeneratedMessage.ExtendableMessage,BuilderType extends GeneratedMessage.ExtendableBuilder>, GeneratedMessage.ExtendableMessage<MessageType extends GeneratedMessage.ExtendableMessage>, GeneratedMessage.ExtendableMessageOrBuilder<MessageType extends GeneratedMessage.ExtendableMessage>, GeneratedMessage.FieldAccessorTable, GeneratedMessage.GeneratedExtension<ContainingType extends Message,Type>
Modifier and Type | Field and Description |
---|---|
static int |
LOCATION_FIELD_NUMBER |
static Parser<DescriptorProtos.SourceCodeInfo> |
PARSER |
Modifier and Type | Method and Description |
---|---|
static DescriptorProtos.SourceCodeInfo |
getDefaultInstance() |
DescriptorProtos.SourceCodeInfo |
getDefaultInstanceForType()
Get an instance of the type with no fields set.
|
static Descriptors.Descriptor |
getDescriptor() |
DescriptorProtos.SourceCodeInfo.Location |
getLocation(int index)
repeated .google.protobuf.SourceCodeInfo.Location location = 1; |
int |
getLocationCount()
repeated .google.protobuf.SourceCodeInfo.Location location = 1; |
java.util.List<DescriptorProtos.SourceCodeInfo.Location> |
getLocationList()
repeated .google.protobuf.SourceCodeInfo.Location location = 1; |
DescriptorProtos.SourceCodeInfo.LocationOrBuilder |
getLocationOrBuilder(int index)
repeated .google.protobuf.SourceCodeInfo.Location location = 1; |
java.util.List<? extends DescriptorProtos.SourceCodeInfo.LocationOrBuilder> |
getLocationOrBuilderList()
repeated .google.protobuf.SourceCodeInfo.Location location = 1; |
Parser<DescriptorProtos.SourceCodeInfo> |
getParserForType()
Gets the parser for a message of the same type as this message.
|
int |
getSerializedSize()
Get the number of bytes required to encode this message.
|
UnknownFieldSet |
getUnknownFields()
Get the
UnknownFieldSet for this message. |
boolean |
isInitialized()
Returns true if all required fields in the message and all embedded
messages are set, false otherwise.
|
static DescriptorProtos.SourceCodeInfo.Builder |
newBuilder() |
static DescriptorProtos.SourceCodeInfo.Builder |
newBuilder(DescriptorProtos.SourceCodeInfo prototype) |
DescriptorProtos.SourceCodeInfo.Builder |
newBuilderForType()
Constructs a new builder for a message of the same type as this message.
|
static DescriptorProtos.SourceCodeInfo |
parseDelimitedFrom(java.io.InputStream input) |
static DescriptorProtos.SourceCodeInfo |
parseDelimitedFrom(java.io.InputStream input,
ExtensionRegistryLite extensionRegistry) |
static DescriptorProtos.SourceCodeInfo |
parseFrom(byte[] data) |
static DescriptorProtos.SourceCodeInfo |
parseFrom(byte[] data,
ExtensionRegistryLite extensionRegistry) |
static DescriptorProtos.SourceCodeInfo |
parseFrom(ByteString data) |
static DescriptorProtos.SourceCodeInfo |
parseFrom(ByteString data,
ExtensionRegistryLite extensionRegistry) |
static DescriptorProtos.SourceCodeInfo |
parseFrom(CodedInputStream input) |
static DescriptorProtos.SourceCodeInfo |
parseFrom(CodedInputStream input,
ExtensionRegistryLite extensionRegistry) |
static DescriptorProtos.SourceCodeInfo |
parseFrom(java.io.InputStream input) |
static DescriptorProtos.SourceCodeInfo |
parseFrom(java.io.InputStream input,
ExtensionRegistryLite extensionRegistry) |
DescriptorProtos.SourceCodeInfo.Builder |
toBuilder()
Constructs a builder initialized with the current message.
|
void |
writeTo(CodedOutputStream output)
Serializes the message and writes it to
output . |
getAllFields, getDescriptorForType, getField, getRepeatedField, getRepeatedFieldCount, hasField, newFileScopedGeneratedExtension, newMessageScopedGeneratedExtension
equals, findInitializationErrors, getInitializationErrorString, hashCode, toString
toByteArray, toByteString, writeDelimitedTo, writeTo
findInitializationErrors, getAllFields, getDescriptorForType, getField, getInitializationErrorString, getRepeatedField, getRepeatedFieldCount, hasField
toByteArray, toByteString, writeDelimitedTo, writeTo
public static Parser<DescriptorProtos.SourceCodeInfo> PARSER
public static final int LOCATION_FIELD_NUMBER
public static DescriptorProtos.SourceCodeInfo getDefaultInstance()
public DescriptorProtos.SourceCodeInfo getDefaultInstanceForType()
MessageLiteOrBuilder
getDefaultInstance()
method of generated message classes in that
this method is an abstract method of the MessageLite
interface
whereas getDefaultInstance()
is a static method of a specific
class. They return the same thing.getDefaultInstanceForType
in interface MessageLiteOrBuilder
getDefaultInstanceForType
in interface MessageOrBuilder
public final UnknownFieldSet getUnknownFields()
MessageOrBuilder
UnknownFieldSet
for this message.getUnknownFields
in interface MessageOrBuilder
getUnknownFields
in class GeneratedMessage
public static final Descriptors.Descriptor getDescriptor()
public Parser<DescriptorProtos.SourceCodeInfo> getParserForType()
MessageLite
getParserForType
in interface Message
getParserForType
in interface MessageLite
getParserForType
in class GeneratedMessage
public java.util.List<DescriptorProtos.SourceCodeInfo.Location> getLocationList()
repeated .google.protobuf.SourceCodeInfo.Location location = 1;
A Location identifies a piece of source code in a .proto file which corresponds to a particular definition. This information is intended to be useful to IDEs, code indexers, documentation generators, and similar tools. For example, say we have a file like: message Foo { optional string foo = 1; } Let's look at just the field definition: optional string foo = 1; ^ ^^ ^^ ^ ^^^ a bc de f ghi We have the following locations: span path represents [a,i) [ 4, 0, 2, 0 ] The whole field definition. [a,b) [ 4, 0, 2, 0, 4 ] The label (optional). [c,d) [ 4, 0, 2, 0, 5 ] The type (string). [e,f) [ 4, 0, 2, 0, 1 ] The name (foo). [g,h) [ 4, 0, 2, 0, 3 ] The number (1). Notes: - A location may refer to a repeated field itself (i.e. not to any particular index within it). This is used whenever a set of elements are logically enclosed in a single code segment. For example, an entire extend block (possibly containing multiple extension definitions) will have an outer location whose path refers to the "extensions" repeated field without an index. - Multiple locations may have the same path. This happens when a single logical declaration is spread out across multiple places. The most obvious example is the "extend" block again -- there may be multiple extend blocks in the same scope, each of which will have the same path. - A location's span is not always a subset of its parent's span. For example, the "extendee" of an extension declaration appears at the beginning of the "extend" block and is shared by all extensions within the block. - Just because a location's span is a subset of some other location's span does not mean that it is a descendent. For example, a "group" defines both a type and a field in a single declaration. Thus, the locations corresponding to the type and field and their components will overlap. - Code which tries to interpret locations should probably be designed to ignore those that it doesn't understand, as more types of locations could be recorded in the future.
getLocationList
in interface DescriptorProtos.SourceCodeInfoOrBuilder
public java.util.List<? extends DescriptorProtos.SourceCodeInfo.LocationOrBuilder> getLocationOrBuilderList()
repeated .google.protobuf.SourceCodeInfo.Location location = 1;
A Location identifies a piece of source code in a .proto file which corresponds to a particular definition. This information is intended to be useful to IDEs, code indexers, documentation generators, and similar tools. For example, say we have a file like: message Foo { optional string foo = 1; } Let's look at just the field definition: optional string foo = 1; ^ ^^ ^^ ^ ^^^ a bc de f ghi We have the following locations: span path represents [a,i) [ 4, 0, 2, 0 ] The whole field definition. [a,b) [ 4, 0, 2, 0, 4 ] The label (optional). [c,d) [ 4, 0, 2, 0, 5 ] The type (string). [e,f) [ 4, 0, 2, 0, 1 ] The name (foo). [g,h) [ 4, 0, 2, 0, 3 ] The number (1). Notes: - A location may refer to a repeated field itself (i.e. not to any particular index within it). This is used whenever a set of elements are logically enclosed in a single code segment. For example, an entire extend block (possibly containing multiple extension definitions) will have an outer location whose path refers to the "extensions" repeated field without an index. - Multiple locations may have the same path. This happens when a single logical declaration is spread out across multiple places. The most obvious example is the "extend" block again -- there may be multiple extend blocks in the same scope, each of which will have the same path. - A location's span is not always a subset of its parent's span. For example, the "extendee" of an extension declaration appears at the beginning of the "extend" block and is shared by all extensions within the block. - Just because a location's span is a subset of some other location's span does not mean that it is a descendent. For example, a "group" defines both a type and a field in a single declaration. Thus, the locations corresponding to the type and field and their components will overlap. - Code which tries to interpret locations should probably be designed to ignore those that it doesn't understand, as more types of locations could be recorded in the future.
getLocationOrBuilderList
in interface DescriptorProtos.SourceCodeInfoOrBuilder
public int getLocationCount()
repeated .google.protobuf.SourceCodeInfo.Location location = 1;
A Location identifies a piece of source code in a .proto file which corresponds to a particular definition. This information is intended to be useful to IDEs, code indexers, documentation generators, and similar tools. For example, say we have a file like: message Foo { optional string foo = 1; } Let's look at just the field definition: optional string foo = 1; ^ ^^ ^^ ^ ^^^ a bc de f ghi We have the following locations: span path represents [a,i) [ 4, 0, 2, 0 ] The whole field definition. [a,b) [ 4, 0, 2, 0, 4 ] The label (optional). [c,d) [ 4, 0, 2, 0, 5 ] The type (string). [e,f) [ 4, 0, 2, 0, 1 ] The name (foo). [g,h) [ 4, 0, 2, 0, 3 ] The number (1). Notes: - A location may refer to a repeated field itself (i.e. not to any particular index within it). This is used whenever a set of elements are logically enclosed in a single code segment. For example, an entire extend block (possibly containing multiple extension definitions) will have an outer location whose path refers to the "extensions" repeated field without an index. - Multiple locations may have the same path. This happens when a single logical declaration is spread out across multiple places. The most obvious example is the "extend" block again -- there may be multiple extend blocks in the same scope, each of which will have the same path. - A location's span is not always a subset of its parent's span. For example, the "extendee" of an extension declaration appears at the beginning of the "extend" block and is shared by all extensions within the block. - Just because a location's span is a subset of some other location's span does not mean that it is a descendent. For example, a "group" defines both a type and a field in a single declaration. Thus, the locations corresponding to the type and field and their components will overlap. - Code which tries to interpret locations should probably be designed to ignore those that it doesn't understand, as more types of locations could be recorded in the future.
getLocationCount
in interface DescriptorProtos.SourceCodeInfoOrBuilder
public DescriptorProtos.SourceCodeInfo.Location getLocation(int index)
repeated .google.protobuf.SourceCodeInfo.Location location = 1;
A Location identifies a piece of source code in a .proto file which corresponds to a particular definition. This information is intended to be useful to IDEs, code indexers, documentation generators, and similar tools. For example, say we have a file like: message Foo { optional string foo = 1; } Let's look at just the field definition: optional string foo = 1; ^ ^^ ^^ ^ ^^^ a bc de f ghi We have the following locations: span path represents [a,i) [ 4, 0, 2, 0 ] The whole field definition. [a,b) [ 4, 0, 2, 0, 4 ] The label (optional). [c,d) [ 4, 0, 2, 0, 5 ] The type (string). [e,f) [ 4, 0, 2, 0, 1 ] The name (foo). [g,h) [ 4, 0, 2, 0, 3 ] The number (1). Notes: - A location may refer to a repeated field itself (i.e. not to any particular index within it). This is used whenever a set of elements are logically enclosed in a single code segment. For example, an entire extend block (possibly containing multiple extension definitions) will have an outer location whose path refers to the "extensions" repeated field without an index. - Multiple locations may have the same path. This happens when a single logical declaration is spread out across multiple places. The most obvious example is the "extend" block again -- there may be multiple extend blocks in the same scope, each of which will have the same path. - A location's span is not always a subset of its parent's span. For example, the "extendee" of an extension declaration appears at the beginning of the "extend" block and is shared by all extensions within the block. - Just because a location's span is a subset of some other location's span does not mean that it is a descendent. For example, a "group" defines both a type and a field in a single declaration. Thus, the locations corresponding to the type and field and their components will overlap. - Code which tries to interpret locations should probably be designed to ignore those that it doesn't understand, as more types of locations could be recorded in the future.
getLocation
in interface DescriptorProtos.SourceCodeInfoOrBuilder
public DescriptorProtos.SourceCodeInfo.LocationOrBuilder getLocationOrBuilder(int index)
repeated .google.protobuf.SourceCodeInfo.Location location = 1;
A Location identifies a piece of source code in a .proto file which corresponds to a particular definition. This information is intended to be useful to IDEs, code indexers, documentation generators, and similar tools. For example, say we have a file like: message Foo { optional string foo = 1; } Let's look at just the field definition: optional string foo = 1; ^ ^^ ^^ ^ ^^^ a bc de f ghi We have the following locations: span path represents [a,i) [ 4, 0, 2, 0 ] The whole field definition. [a,b) [ 4, 0, 2, 0, 4 ] The label (optional). [c,d) [ 4, 0, 2, 0, 5 ] The type (string). [e,f) [ 4, 0, 2, 0, 1 ] The name (foo). [g,h) [ 4, 0, 2, 0, 3 ] The number (1). Notes: - A location may refer to a repeated field itself (i.e. not to any particular index within it). This is used whenever a set of elements are logically enclosed in a single code segment. For example, an entire extend block (possibly containing multiple extension definitions) will have an outer location whose path refers to the "extensions" repeated field without an index. - Multiple locations may have the same path. This happens when a single logical declaration is spread out across multiple places. The most obvious example is the "extend" block again -- there may be multiple extend blocks in the same scope, each of which will have the same path. - A location's span is not always a subset of its parent's span. For example, the "extendee" of an extension declaration appears at the beginning of the "extend" block and is shared by all extensions within the block. - Just because a location's span is a subset of some other location's span does not mean that it is a descendent. For example, a "group" defines both a type and a field in a single declaration. Thus, the locations corresponding to the type and field and their components will overlap. - Code which tries to interpret locations should probably be designed to ignore those that it doesn't understand, as more types of locations could be recorded in the future.
getLocationOrBuilder
in interface DescriptorProtos.SourceCodeInfoOrBuilder
public final boolean isInitialized()
MessageLiteOrBuilder
isInitialized
in interface MessageLiteOrBuilder
isInitialized
in class GeneratedMessage
public void writeTo(CodedOutputStream output) throws java.io.IOException
MessageLite
output
. This does not
flush or close the stream.writeTo
in interface MessageLite
writeTo
in class AbstractMessage
java.io.IOException
public int getSerializedSize()
MessageLite
getSerializedSize
in interface MessageLite
getSerializedSize
in class AbstractMessage
public static DescriptorProtos.SourceCodeInfo parseFrom(ByteString data) throws InvalidProtocolBufferException
InvalidProtocolBufferException
public static DescriptorProtos.SourceCodeInfo parseFrom(ByteString data, ExtensionRegistryLite extensionRegistry) throws InvalidProtocolBufferException
InvalidProtocolBufferException
public static DescriptorProtos.SourceCodeInfo parseFrom(byte[] data) throws InvalidProtocolBufferException
InvalidProtocolBufferException
public static DescriptorProtos.SourceCodeInfo parseFrom(byte[] data, ExtensionRegistryLite extensionRegistry) throws InvalidProtocolBufferException
InvalidProtocolBufferException
public static DescriptorProtos.SourceCodeInfo parseFrom(java.io.InputStream input) throws java.io.IOException
java.io.IOException
public static DescriptorProtos.SourceCodeInfo parseFrom(java.io.InputStream input, ExtensionRegistryLite extensionRegistry) throws java.io.IOException
java.io.IOException
public static DescriptorProtos.SourceCodeInfo parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException
java.io.IOException
public static DescriptorProtos.SourceCodeInfo parseDelimitedFrom(java.io.InputStream input, ExtensionRegistryLite extensionRegistry) throws java.io.IOException
java.io.IOException
public static DescriptorProtos.SourceCodeInfo parseFrom(CodedInputStream input) throws java.io.IOException
java.io.IOException
public static DescriptorProtos.SourceCodeInfo parseFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry) throws java.io.IOException
java.io.IOException
public static DescriptorProtos.SourceCodeInfo.Builder newBuilder()
public DescriptorProtos.SourceCodeInfo.Builder newBuilderForType()
MessageLite
newBuilderForType
in interface Message
newBuilderForType
in interface MessageLite
public static DescriptorProtos.SourceCodeInfo.Builder newBuilder(DescriptorProtos.SourceCodeInfo prototype)
public DescriptorProtos.SourceCodeInfo.Builder toBuilder()
MessageLite
toBuilder
in interface Message
toBuilder
in interface MessageLite